ANIMALSCRIPT- The Reference

Dr. Guido Ro6Bling
TU Darmstadt
Computer Science Department - RBG
roessling@acm.org®

September 27, 2008
Contents
1 Notation
2 Basic Definitions
2.1 Numbers and numerical eXpressionso e
2.2 Definition of nodes, coordinates and locations
2.3 Definition of locations e e
24 Colordefinitions L
2.5 Display options for graphical elements 0oL
2.6 Fontdefinitions e
2.7 Specifying a list of graphicobjectIDs
2.8 Specifying quoted text e
2.9 Concluding comments i e e e e
3 File Header Format
3.1 Language supporto e e e e
4 Defining graphic primitives
4.1 Available typeso L e e e e
42 Point primitive e e e e e e e e
4.3 Polyline type primitives e e
4.4 Polygon primitives e e e e e
4.4.1 Square primitive e e e e e e e e e e e e
4.42 Rectangle primitives L. e
443 Triangle primitive L. e
444 Polygonprimitive e
4.5 TextprimitivesS oot e e e e e e e
4.5.1 Internationalization for Text Primitives
4.6 Arcprimitives e e e e e e e e e e e
4.6.1 ArcPrimitiveo
4.6.2 Circle Segment subtype e
4.63 Ellipsesubtype e
4.6.4 Circlesubtype

*Check out the official ANIMAL WWW page at http://algoanim.info/Animal2 for the most recent ANIMAL release
including ANIMALSCRIPT, documentation including this reference, example animations and other stuff.

since 2.0

CONTENTS

477 Array primitives e e e e e e e e e e e e e e
477.1 Arraymarker e e
4.8 Listelements e e e e e e e e e e
4.9 Source Code embedding L
4.10 Grid Primitives L e e e e e e e
4.11 Graphs L
5 Supported Operations
5.1 Array Operations oo e e e e
5.1.1 Putting Elementsinan Arrayo
5.1.2 Swapping Array Elements
5.1.3 Moving Array Markers o
5.1.4 Highlighting Array Cellsor Elements
52 ObjectCloning o e
5.3 Color Change Operations vt it vt e e e
54 Code Operations v v i i e e e e e e e e e e e e e
5.5 Delay Between Steps Lo e e e e e
5.6 Printing Status Information00 0oL
5.7 Element Grouping ot e e
5.8 Generating Navigation Labels oo
5.9 ListOperations v v i e e e e e e e e e e e e e e e e e
5.10 Move Operations o i i e e e e e e e e e
5.10.1 Move Via oo e e
5102 Move Along o o L e
5103 MoveTo... . . . oo oo
5.11 Rotation Operation i v i e e e e e e e
5.12 Show /Hide Operation i i ittt e e
513 Swap Operation e e e
5.14 Changing the Text or Font of a Text Component
5.15 Operationson Variables L
5.16 Grid Operations e e
5.16.1 Addressing Grid Positions
5.16.2 Refreshing the Displayof aGrid
5.163 UpdatingaGrid Value
5.16.4 Highlighting Grid Cellsor Elements
5.16.5 Changing the Color of Grid Cellsor Elements
5.16.6 Aligning Grid Values e
5.16.7 Changing the Fontof a Grid Element
5.16.8 Swapping Grid Values L
5.17 Graph Operations i e

6 Supported Color Names

A Specific Methods
Al MoveMethods
A2 Color Change Methods e

B Complete BNF

22
23
24
25
27
28

30
30
30
30
31
31
32
32
33
33
34
34
35
35
35
36
36
37
37
38
38
38
39
39
39
41
41
41
41
42
42
42
43

44

45
45
46

47

since 2.3
since 2.3

since 2.0
since 2.2
since 2.3

1 NOTATION 3

1 Notation

In the following sections, the structure for the supported types and effects is described. We use a very Notation
informal BNF' where components in brackets [] are optional and components in curly braces {} may be []
repeated as often as one wants, but must be present at least once. If a curly brace is supposed to be placed in O

the file, it will be quoted using single quotes (* {’ and ’ }’, respectively).

Note that the combination, e.g., [{component}], means that component is optional, but may appear as

often as wanted: it is optional due to being set in brackets [], but if given, may be given as often as wanted

{h.

Listing 1 provides an example definition for the notation used throughout this document.

Listing 1: Example definition

<illustrativeExample >:
%example “<id>" \n
{ author "<text>” \n }
[comment "<text>" \n]

According to the definition in Listing 1, an entity called i1lustrativeExample is defined as follows:

e Fach illustrativeExample must start with the characters $example, followed by an ID (de-
fined elsewhere) enclosed in double quotes. This line must end with a linefeed character (do not worry
about the notation “\n” here; pressing the return or enter key works exactly as intended).

e The header line must be followed by at least one author specification (due to the curly braces, which
mean ‘“as many as wanted, but at least one element”). Each author specification consists of the keyword
author, followed by a fext enclosed in double quotes, and followed by a linefeed.

e Finally, an optional comment may be given. This starts with the keyword comment, followed by a
text in double quotes and a linefeed.

If we assume that ID is defined as an integer value, and text covers the usual text components (letters, digits,
comma, space etc.), the following would be a legal instance of illustrativeExample:

Listing 2: Notation example

%example 7177
author ”"Dr. Guido Roessling <roessling@acm.org>"
author ”Several volunteer testers”

As you can see, the optional comment has been left out.

In the following notation, keywords are bold; variables are placed in italics. keywords
Mutually exclusive alternatives are separated by |. The following example illustrates optional arguments and ygrigbles
alternatives:|

Listing 3: timeOffset

<timeOffset >:
after <nat> [ticks | ms]

This definition means that the last argument is optional (due to the brackets encapsulating them), but only
one of them may be given. Thus, correct inputs are

e after 500 (note: in this case, ticks is assumed)
e after 50 ticks
o after 500 ms

! Backus-Naur-Form, a formal notation for describing language grammars

2 BASIC DEFINITIONS

2 Basic Definitions

In the following subsections, we examine basic definitions that will be used throughout the document. These
include numerical values and expressions, the definition of nodes, coordinates and locations, and the list of

available colors, display options and fonts in ANIMALSCRIPT.

2.1 Numbers and numerical expressions

ANIMALSCRIPT uses on natural or integer numbers in its BNF.
Natural numbers (symbol <nat> are positive whole numbers including 0.

Integer numbers are whole numbers, i.e., without a decimal point. They can be specified in the following

ways:
e by giving their literal value, e.g., as 42,
e as a point of a given object’s bounding box, using the anchor points x, y, width and height

e or as an expression using double values and the four operators +, -, *, /.

Listing 4: Definition of natural and integer numbers

<nat >:
o 1| ... |

<int >:
<nat> | —<nat> | (<double> <operator> <double >)
| ”objectID” <objectPosition >

<operator >:
+ | = | x|/

<objectPosition >:
x | y | width | height

2.2 Definition of nodes, coordinates and locations
ANIMALSCRIPT provides a very versatile way to define nodes or coordinates:
e Using absolute coordinates,
e Using an offset from a point of the bounding box of a given object,
o Using an offset from a numbered point of a fitting underlying structures, such as a polygon,
e Using an offset from a defined location,

e Using an offset from the baseline of a text.

These different approaches to define a coordinate can be used wherever the definition of a coordinate or
node is expected. For example, a polygon can be defined by combining an arbitrary combination of the

above approaches.

nat

int

since 2.0

since 2.0

2 BASIC DEFINITIONS 5

Listing 5: Coordinate definition

<nodeDefinition >:
(<int >, <int>) | <offset> | move (<int >, <int>)

<offset >:
offset (<int>, <int>) from “referencelD” node <nat+>
| offset (<int>, <int>) from “referencelD” <direction>
| offset (<int>, <int>) from ”locationID”
| offset (<int>, <int>) from “referencelD”
baseline [start | end]

<direction >:
NW | N|NE|W|C|E|SW]| S | SE
| Northwest | North | Northeast | West
| Middle | Center | East | Southwest
| South | Southeast

\
r’EG'bEG'J Text base alignment _‘_ﬂr’sﬁ. 0) from "aText” baseline end
MWW M ME
G- - R 130
| 85
| y offset (130, 85) from "aPoly" NE
wo

focation “Toc1” (370, 220)

70
offset (70, B5) from "Tocl"

65
affset (105, 20) from "aPoly” node 4

a0

Figure 1: ANIMALSCRIPT node definitions: absolute, offset from object or node

Figure 1 illustrates the different variants for specifying coordinates in ANIMALSCRIPT. The circle at the top
left is specified using absolute coordinates placed in a pair of parentheses. The shaded polygon is referred
to as “aPoly”, the user-assigned name of the object. The dashed box around the polygon represents the
polygon’s bounding box, the smallest rectangle that covers all nodes of the polygon. The rectangle to the
right of the shaded polygon is specified at an offset of 130 pixels to the right and 85 pixels below the northeast
(NE) corner of the bounding box. Note that the specification uses the polygon’s name and that the bounding
box is used implicitly, i.e. there is no explicit mentioning of it. The square below the shaded polygon was
specified at an offset from one of the polygon’s nodes.

Finally, we have defined a location object called locl at coordinates (370, 290), shown as a dashed circle.

bounding
box

since 2.0

2 BASIC DEFINITIONS 6

We can use this to specify a new object relative to the location. As the location is a single point, we do not
have to specify a bounding box coordinate or node number.

2.3 Definition of locations

As of release 2.0, ANIMALSCRIPT allows the user to specify customized locations using the following
notation:

Listing 6: Definition of locations

<location >:
<locationKeyword> "locationID” [at] <nodeDefinition >
| moveLocation “locationID” [to] <nodeDefinition>

Once a location is set, it can be used as the starting point for a relative object placement.

2.4 Color definitions

ANIMALSCRIPT provides 35 predefined color names and also allows the user to specify an arbitrary RBG
color by giving the color values, as shown in Listing 7.

Listing 7: Specifying colors in ANIMALSCRIPT

<color >:

black | blue | blue2 | blue3 | blued4 | brown2

| brown3 | brown4 | cyan | cyan2 | cyan3 | cyand
| dark Gray | gold | greem | green2 | green3

| greend | light Gray| light_blue | magenta

| magenta2 | magenta3d | magentad | orange | pink
| pink2 | pink3 | pink4 | red | red2 | red3

| red4 | white | yellow | (<nat>, <nat>, <nat>)

All entries except for the last contain the predefined color names in ANIMALSCRIPT. The last entry allows
the user to specify arbitrary RGB colors by assigning explicit values for r (=red), g (=green) and b (=blue).
Each color value must be an integer in the interval [0, 255].

Note that there are two color consisting of two words: light Gray and dark Gray. This is not a
mistake; we have adopted the notation of the colors from the Unix-based xfig graphics program.

For a mapping of the color names to RGB values, see section 6 on page 44.

since 2.0

2 BASIC DEFINITIONS 7

2.5 Display options for graphical elements

ANIMALSCRIPT allows the user to specify that a given graphical object may be hidden (thus, invisible),
or may only appear after a certain delay. The delay is measured either in ticks, where one tick equals one

animation frame in the display, or in ms. ticks
ms

Listing 8: Definition of display options

<displayOptions >:
hidden | <timeOffset>

<timeOffset >:
after <nat> [ticks | ms]

<timing >:
[<timeOffset >] [within <nat> [ticks | ms]]

(S

The displayOptions tag is usually employed for defining graphic objects, which may be specified as
being invisible (hidden) or appear only after a certain delay. The t iming tag is used for animation effects
(“animators”) which can use both an offset and a duration.

2.6 Font definitions

To keep maximum platform independence, ANIMALSCRIPT supports only the three basic font families Serif,
SansSerif and Monospaced. If no font is specified for a given text element, ANIMAL uses

1. the last font name used for a text component;

2. SansSerif if no font name was given before.

Listing 9: Definition of a font entry

:
[font <fontNames>] [size fontSize] [bold] [italic]

Listing 10: Availabel font names in ANIMALSCRIPT
L<fontName >: ’

Serif | SansSerif | Monospaced

2.7 Specifying a list of graphic object IDs

ANIMALSCRIPT makes it very easy to specify a set of objects - one simply lists their IDs with a space
between each element. Note that each object ID must be quoted individually. Other notations, for exam-
ple“a, b, c”, are invalid, as ANIMALSCRIPT would then look for an object with ID “a,b,c”.

Listing 11: Specifying a list of graphical object IDs

<oids >:
{ “targetOID” }

2 BASIC DEFINITIONS 8

2.8 Specifying quoted text

Quoted text (“xxx”’) must be enclosed in double quotes. All standard word characters (i.e., letters, digits,
whitespace, punctuation etc.) is legal. For the sake of clarity, the BNF will usually place a description of the
expected content inside the double quotes. This does not mean that you have to use this text verbatim!

2.9 Concluding comments

ANIMALSCRIPT is line-oriented: each line may contain exactly on command, comment, or completely
consist of whitespace elements. Placing more than one command in a single line is syntactically incorrect.
Spreading a command over several lines is also invalid.

Due to layout restrictions, some commands in this documentation are spread over multiple (document) lines.
However, they have to be placed in one line per command in actual input files.

Mandatory line breaks — of which there are but a handful in ANIMALSCRIPT- are clearly indicated by \n. \n

3 FILE HEADER FORMAT 9

3 File Header Format

ANIMALSCRIPT files always have the header shown in Listing 12, starting with the animalScriptFile
tag.

Listing 12: ANIMALSCRIPT header format

<animalScriptFile >:
<fileHeader> { <command> \n}

<fileHeader >:
%Animal <double> [<nat>x<nat>] [\n <titleInfo >]
[\n <authorInfo >]

<titleInfo >:
title “"title as a string”

<authorInfo >:
author “author name including EMail address”

\

Note:

e The percentage sign % must be given!

e The double following the keyword Animal is the version number of ANIMALSCRIPT used to deter-
mine additional parsing options. You should always use the version number of the current ANIMAL
release you use, e.g. 1.4 or 2.0.

o The two optional natural numbers specify the display size of the animation (width * height). Since
ANIMAL 2.2, they will cause the animation window to have the proper width and height to show the
animation.

e The texts for author and title will be shown in the About this Animation. .. window, if they are present.
A valid file header may thus look as shown in Listing 13.

Listing 13: Example ANIMALSCRIPT file header

%Animal 2.0
title "Demo of AnimalScript features”
author ”Guido Roessling <roessling@acm.org>"

The file header is followed by a set of single line commands. Each command is defined as shown in Listing
14.

Listing 14: Definition of commands

<command >:
<objectPrimitives > | <operations>
| "{> | '} | <languageSupport> | <extensionCommand>

<objectPrimitives >:
<arcTypes> | <array> | <arrayMarker> | <codeTypes>
| <listelement> | <point> | <polygonTypes>
| <polyline> | <text> | <grid> | <graph>

3 FILE HEADER FORMAT 10

Listing 15 provides an overview of the operations on graphical objects and other actions that ANIMALSCRIPT
supports.

Listing 15: Definition of operations

<operations >:
<arrayOp> | <clone> | <colorChangeTypes> | <delay>
| <echo> | <label> | <link> | <location>
| <merge> | <move> | <rotate> | <showTypes>
| <swap> | <setText> | <setFont> | <variableSupport>
| <assertion> | <gridOperations> | <graphOperations>

(S

Curly braces {} are used start or end a composite step. All commands between the braces will take place in
the same step. Note that the braces must appear on a single line each, which must otherwise be empty.

To make scripting code easier to read, all lines starting with a hash mark # are considered comments and
ignored during ANIMALSCRIPT parsing.

3.1 Language support

ANIMALSCRIPT is prepared for Internationalization using the built-in language support, which is used to
support multiple languages inside ANIMALSCRIPT animations. If used wisely, it allows the user to generate
animation to generate a single animation that incorporates separate language versions.

In order to harness the full power of this functionality, the user has to use relative object placement as
illustrated in figure 1, as text objects tend to have different sizes in different languages. For example, German
sentences are usually longer than their English counterpart. The built-in internationalization support of
ANIMALSCRIPT provides the commands shown in Listing 16.

Listing 16: Internationalization support

<languageSupport >:
supports { “languageKey” }
[\n <resourceKey> "fileNameWithoutExtension”]

<resourceKey >:

resource | bundle | resourceBundle
<intText >:
“text” | key: “textResourceKey” | ({ key: "text” })

\S

The support s statement is followed by a list of language keys, as specified in the ISO standard. For further
details, check the Java API Documentation for class java.util.Locale. For example, use en for English, fr for
French (Frangaise) and de for German (Deutsch). This variant is used when the translations are embedded
into the animation.
For internationalized text, the user can choose between using the actual text (without translations), a key to
the resource file, or a key followed by the translation into the target language. In the latter case, key should
be a valid language key supported by the animation.
Once the ANIMALSCRIPT parser reaches a supports command, it will pop up a dialog that asks the
user to choose the language for this animation. All internationalized elements will then be displayed in the
language chosen by the user. Note that without a supports keyword, internationalization will not work in
ANIMALSCRIPT.
Optionally, this statement may be followed by one of the resourceKey statements to define an external
resource file that contains the translations of the text elements. This is the preferred approach. When the
ANIMALSCRIPT parser reads the support statement, it queries the user for the language to use. If an
external resource is specified, it will then try to open a file of the following name:
fileNameWithoutExtension.languageKey

composite
steps
#

resource
files

3 FILE HEADER FORMAT 11

Let us regard the brief example in Listing 17.

Listing 17: Internationalization example

2 || resourceBundle “demoBundle”

ltsupports “en” “de”

After the supports command is parsed (line 1), the user will be prompted to select one of the languages en
or de (that is, English or German). Let us assume the user chooses en. ANIMALSCRIPT will then try to open
the file demoBundle. en that contains the English translations of the animation elements.

4 DEFINING GRAPHIC PRIMITIVES 12

4 Defining graphic primitives

4.1

Available types

The version of ANIMAL described in this document supports the following primitives:

point, described in Section 4.2 on the next page

line and polyline, described in Section 4.3 on the following page

polygon with several ubtypes, described in Section 4.4 on page 14

text, described in Section 4.5 on page 17

arcs with several subtypes, described in Section 4.6 on page 19

list element, described in Section 4.8 on page 24

arrays and array markers, described in Section 4.7 on page 22

source code support, described in Section 4.9 on page 25

grids, usually in the form of a matrix, described in Section 4.10 on page 27

graphs, described in Section 4.11 on page 28

Most graphical primitives share a set of common characteristics, as follows:

The primitive’s ID is always specified immediately after the first keyword. It contains the (user-chosen
and thus arbitrary) name for the component, placed in double quotes. All operations later on have to
use this ID if they want to modify the primitive.

Each nodeDefinition entry represents the coordinates of a single point, or a relative placement accord-
ing to the offset given - see Section 2 on page 4. The number of legal nodes depend on the specific
primitive.

At least one color is defined for each object. The “main” color—e.g., the color of a text primitive, and
the outline of a polygon—is defined following the keyword color. Other colors are introduced by
appropriate keywords.

depthValue defines the depth of the object. 0 stands for foreground, 1 for the first layer behind the
foreground etc. The higher the value, the farther to the “back” the object is places.

The default value substituted is the value for the background 231 _ 1 =2147483647, equal to Java’s
Integer .MAX_VALUE.

displayOptions determine if the object should be shown and if so, when. See Section 2 on page 4 for
details.

Listing 18: Definition of the ANIMALSCRIPT primitives

<objectPrimitives >:
<arcTypes> | <array> | <arrayMarker> | <codeTypes>
| <listelement> | <point> | <polygonTypes>
| <polyline> | <text> | <grid> | <graph>

4 DEFINING GRAPHIC PRIMITIVES 13

4.2 Point primitive
The structure for a point is shown in Listing 19.

Listing 19: Notation for a point primitive

<point >:
point “pointID” <nodeDefinition> [color <color >]
[depth <nat>] [<displayOptions >]

Contrary to the formatting shown here, the point definition must appear in a single line which starts with the
keyword point (disregarding whitespace) and does not contain any other statements.
An example command for generating a point is shown in Listing 20.

Listing 20: Example command for a point primitive
Lﬂpoint ”p” (20, 20) color blue3 depth 5 J

The output of this is shown in Figure 2.

[

Figure 2: Output for the example point primitive

4.3 Polyline type primitives

Listing 21 describes the notation for a line or polyline object. Listing 22 defines how the optional arrows for
line objects can be defined.

Listing 21: Notation for a line or polyline object

<polyline >:
<lineTag> ”1linelD” <nodeDefinition> { <nodeDefinition> }
[color <color >] [depth <nat >]
[<arrowOptions >] [<displayOptions >]

<lineTag >:
polyline | line

Listing 22: Notation for the optional arrows used for several object types

[fwArrow] [bwArrow]

L<arrow0ptions >

Contrary to the formatting shown here, the definition must appear in a single line which starts with the
keyword line or polyline (disregarding whitespace) and does not contain any other statements.
Further explanations:

e Each line / polyline must have at least two nodes (otherwise, it would simply be a point). On the other
hand, the number of nodes is not limited by ANIMALSCRIPT, although there may be practical bounds
imposed by handling speed, memory consumption etc. on your machine.

o If fwArrow is given, the object will have an arrowhead at its end, thus pointing forward.

o If bwArrow is given, the object will have an arrowhead at its start, thus pointing backward.

4 DEFINING GRAPHIC PRIMITIVES 14

Figure 3: Example /ine primitive with both fwArrow and bwArrow

Figure 3 shows the output generated for the following code that generates a line with arrows at both ends, as
it is defined in Listing 23

Listing 23: Example command for a line primitive
[line ”1” (25, 25) (75, 75) color (10, 20, 30) depth 1 fwArrow bwArrow J

Figure 4 shows a polyline which specifies the first coordinate relative to the previous line edge, followed by
two relative offsets to the previous node, respectively. The code for this is shown in Listing 24.

=

Figure 4: Example polyline with three relative nodes

Listing 24: Example command for a polyline with three relative nodes
[poly]ine ”pl” offset (10,10) from 7”1”7 SE move (20,20) move (30,0) bwArr(@'

4.4 Polygon primitives

The family of polygon primitives includes the following subprimitives:

o triangle,
® square,

rectangle, either defined by the upper left point and width/height, or by its upper left and lower right
corner, and
e arbitrary polygon.

As the definition of the subtypes are somewhat different, we describe them in separate subsections.
Apart from the common attributes described in Section 4.1 on page 12, each polygon object can possess fill

options, specified as shown in Listing 25.

Listing 25: Notation for fill options

filled [fillColor <color >]

L<fi110ptions >:

If filled is given, the object will be filled. fillColor may only be used if the keyword filled was also given; it
defines the color the component will be filled with. See section 2.4 on page 6 for a list.
Listing 26 summarizes the elements of the polygon family.

4 DEFINING GRAPHIC PRIMITIVES 15

Listing 26: Definition of the polygon family members

<polygonTypes >:
<square> | <rect> | <triangle> | <polygon>

—_—

44.1 Square primitive
Listing 27 defines the notation for a square primitive.

Listing 27: Definition for the square primitive

<square >:
square ”ID” <nodeDefinition> <nat+>
[color <color >] [depth <nat >]
[<fillOptions >] [<displayOptions >]

A square is defined by its upper left corner (given using a nodeDefinition, as defined in Section 2 on page 4),
and its size (identical for width and height) in pixels.

All other features are described in Section 4.4 on the preceding page.

Figure 5 shows the square generated from the code in Listing 28.

Listing 28: Example command for a square primitive

[square 7s” (50, 50) 45 color grey depth 2 filled fillColor blue

Figure 5: Example square filled with blue

4.4.2 Rectangle primitives
Listing 29 defines the notation for the rectangle primitives supported by ANIMALSCRIPT.

Listing 29: Definition for the rectangle primitive types

<rect >:
<absoluteRectangle > | <relativeRectangle >

<absoluteRectangle >:
rectangle ”"ID” <nodeDefinition> <nodeDefinition >
[color <color >] [depth <nat >]
[<fillOptions >] [<displayOptions >]

<relativeRectangle >:
<relRectName> ”ID” <nodeDefinition> <nodeDefinition >
[color <color >] [depth <nat >]
[<fillOptions >] [<displayOptions >]

<relRectName >:
relrect | relrectangle

(S

4 DEFINING GRAPHIC PRIMITIVES 16

The first nodeDefinition defines the upper left corner of the rectangle, as described in Section 2 on page 4.
For rectangle and its abbreviation rect, the second nodeDefinition contains the coordinates of the lower right
rectangle corner.

For relative rectangles, the second node definition contains the offset from the upper left corner. Thus, the
specified values represent the width and height of the rectangle.

Therefore, the following two definitions are equivalent—it is up to the user to decide which approach is easier
to use in the given circumstances.

Listing 30: Equivalent definition of rectangles

corners at coordinates (10, 10), (20,20)
rectangle “absoluteRect” (10, 10) (20, 20)
corners at coordinates (10, 10), (10+10,10+10)
relrect “relativeRect” (10, 10) (10, 10)

The output of these commands is shown in Figure 6.

o

Figure 6: Example rectangle

4.4.3 Triangle primitive

Listing 31 defines the notation for triangle primitives.

Listing 31: Definition for triangle primitives

<triangle >:
triangle ”"ID” <nodeDefinition> <nodeDefinition>
<nodeDefinition> [color <color >] [depth depthVal]

The nodeDefinition entries define the three coordinates of the triangle, as described in Section 2 on page 4.
All other entries have been described in Section 4.4 on page 14.
The triangle generated from the example code in Listing 32 is shown in Figure 7.

Listing 32: Example command for a triangle primitive

[triangle ”t” (100, 100) (50, 50) (150, 50) filled

Figure 7: Example triangle output

4 DEFINING GRAPHIC PRIMITIVES 17

4.4.4 Polygon primitive

Listing 33 describes the notation for a polygon primitive.

Listing 33: Definition for polygon primitives

<polygon >:
polygon ”ID” <nodeDefinition> <nodeDefinition >
{ <nodeDefinition> } [color <color >]
[depth <nat>] [<fillOptions >]
[<displayOptions >]

Each of the (arbitrarily many) nodeDefinition elements defines one edge of the polygon. All other entries
have already been described in Section 4.4 on page 14.
Listing 34 defines an example polygon. The output of the code is shown in Figure 8.

Listing 34: Example command for a polygon primitive
[polygon “pp” (20,20) (75,80) (75,40) (90,20) filled fillColor (0,128,1}27)

Figure 8: Example polygon

4.5 Text primitives

Components of this type always begin a new line with the keyword text, as shown in Listing 35.

Listing 35: Definition for fext components

<text >:
text "ID” <intText> [at] <nodeDefinition>
[centered | right] [color <color >] [depth <nat>]

The nodeDefinition defines the lower left corner of the text, unless one of the keywords centered or right is
given.

o The optional keyword centered places the middle of the text’s baseline at the point calculated above. centered
It has no effect on its vertical position.
Similarly to centered, right places the lower right corner of the text’s baseline at the point calcu- right
lated above.

o The text’s font is specified inside the fontDef tag, as specified in Section 2.6 on page 7.

o The optional keyword boxed places a filled box below the text. This is especially useful if the text is
supposed to be a header entry.

4 DEFINING GRAPHIC PRIMITIVES 18

4.5.1 Internationalization for Text Primitives

The internationalized text is defined as follows:

Listing 36: Definition for internationalized text components

<intText >:
“text” | key: “textResourceKey” | ({ key: "text” })

As can be seen, there are three notations for specifying a text:

e as a fixed text enclosed in double quotes,
e as the keyword key followed by a colon (:) and the name of the resource key, or

e as a pair of parentheses containing a sequence of languageKey followed by a color (:) and the text
component as a fixed text enclosed in double quotes

The first notation should be self-explanatory. The other two notations use internationalized texts. The second
variant can only be used if a resource file is specified, as defined in Section 3.1 on page 10. If this is the case,
ANIMALSCRIPT looks for a resource with the name as given inside the double quotes. Make sure there are
no typing mistakes in the resource name, especially concerning upper or lower case.

The last variant uses an embedded definition of translations. The pair of parentheses contains an arbitrary
number of language keys as specified by the supports command, followed by a colon (:) and the transla-
tion inside double quotes.

As an example, let us regard the specification provided in Listing 37.

Listing 37: Example of using internationalized text primitives

%Animal 2.0

supports “en” “es”

resource “demoResource”

use direct encoded text, no internationalization
text “straight” ”Straight English Text” (10, 10)
use resource file for language

text “res” key: “header” (10, 40)

use direct translations

text “trans” (en: “Hello” es: "Hola”) (10, 70)

The first text will have the value Straight English Text regardless of the language choice by the viewer. The
next text will take its translation from the specified resource. Note that the reader of the ANIMALSCRIPT file
can not tell the final value of the text, as this is not embedded in the animation. Finally, the last text will be
Hello or Hola, depending on whether the user chose en (English) or es (Spanish).

Figure 9 shows the output generated by line 5 of Listing 37.

Straight English Text

Figure 9: Simple text example

The result of using internationalized text (taken from the above example) is as shown in Figure 10, assuming
the user has chosen en as the output language. The first text primitive (“Hallo”’) comes from line 7 in Listing
37.

4 DEFINING GRAPHIC PRIMITIVES 19

Hallo
Hello

Figure 10: Internationalized text

4.6 Arc primitives
This type contains the following subprimitives:
1. arc and the synonymous ellipseseg for arcs (also called ellipse segments),
2. ellipse,
3. circleseg for segments of a circle, and
4. circle.

As the definition of the subtypes differ slightly, we describe them in separate subsections.
All arc types share the following attributes, beyond the standard attributes described before:

e [D is an arbitrary name for the component.
o The first node definition defines the center of the arc component.

e displayOptions determine if the object should be shown and if so, when. See Section 2 on page 4 for
details.

Listing 38: Definition of the arc farmily or primitives

<arcTypes >:
<arc> | <circleSeg> | <ellipse> | <circle>

—_—

4.6.1 Arc Primitive

Note: the name ellipseSeg is only provided for compatibility with circleSeg.

Listing 39: Definition of an arc primitive

<arc >:
<arcName> ”ID” <nodeDefinition >
radius <nodeDefinition> [angle <int >]
[starts <int>] [clockwise | counterclockwise]
[color <color >] [depth <nat >]
[<closedOptions> [<fillOptions >] | <arrowOptions >]
[<displayOptions >]

<arcName >:
arc | ellipseseg | ellipsesegment

\

o The radius specifies the (x, y) radius of the arc. Note that the width and height of the radius may be
different.

4 DEFINING GRAPHIC PRIMITIVES 20

e arcAngle specifies the total angle of the arc component; the value should lie in the interval [0, 359]
or be 720 to handle a display problem in some Java Virtual Machines.

o startAngle is the starting angle of the arc; a value in the interval [0, 359] with O at the right (east)
and counting clockwise.

e clockwise or the alternative counterclockwise determine whether the arc is oriented clockwise. If
neither option is given, the default is counterclockwise, i.e., at a mathematically positive angle.

o The closedOptions described in Listing 40 currently only contain the keyword closed, which, if given,
causes the segment to be closed (eg., a pie wedge).

Listing 40: Definition of the closed options

closed

[<closed0pti0ns >

o The filledOptions are described in detail in Section 4.3 on page 13.
The code in Listing 41 leads to the output shown in Figure 11.

Listing 41: Example definition of an arc primitive
‘L arc “ar2” (100, 100) radius (20, 40) angle 180 starts 45

counterclockwise closed filled fillColor blue

Figure 11: Example arc primitive

4.6.2 Circle Segment subtype

Circle segments are a special subtype of arcs where the radius width and height are identical. Thus, the
definition replaces the node definition for the radius with an integer value. See Section 4.6.1 on the previous
page for a specification of the other options.

Listing 42: Definition for circle segment primitives

<circleSeg >:
<circleSegName> ”ID” <nodeDefinition>
radius <int> [angle <int>] [starts <int >]
[clockwise | counterclockwise]
[color <color >] [depth <nat >]
[<closedOptions> [<fillOptions >] | <arrowOptions >]
[<displayOptions >]

<circleSegName >:
circleseg | circlesegment

(S

4 DEFINING GRAPHIC PRIMITIVES 21

The code in Listing 43 leads to the output shown in Figure 12.

Listing 43: Example definition of a circle segment primitive
[circleSegment ”cs” (100,100) radius 80 angle 270 starts 60 fwArrow bwArrow

Figure 12: Circle Segment example output

4.6.3 Ellipse subtype

Ellipses, as defined in Listing 44, are a special subtype of arcs that describes a closed arc with an angle
of 360°. Thus, the angle, starts, clockwise, counterclockwise, and arrowOptions parameters from the arc
definition are obsolete. For an explanation of the other parameters, see Section 4.6.1 on page 19.

Listing 44: Definition of the ellipse primitive

<ellipse >:
ellipse ”ID” <nodeDefinition> radius <nodeDefinition>
[color <color >] [depth <int >]
[<fillOptions >] [<displayOptions >]

The output of the example ellipse command in Listing 45 is shown in Figure 13.

Listing 45: Example definition of an ellipse primitive
[ellipse ”el” (50, 50) radius (30, 20) color blue filled fillColor red]

Figure 13: A filled ellipse with a blue outline and red fill color

4.6.4 Circle subtype

Circles are a special subtype of arcs describing a closed arc with an angle of 360°. Thus, the angle, starts,
clockwise, counterclockwise, and arrowOptions parameters from the arc definition are obsolete. Addition-
ally, the radius height and width are identical and thus specified by an integer value instead of a node defini-
tion. For an explanation of the parameters, see Section 4.6.1 on page 19.

4 DEFINING GRAPHIC PRIMITIVES 22

Listing 46: Definition of the circle primitive

<circle >:
circle ”ID” <nodeDefinition> radius <int>
[color <color >] [depth <nat >]
[<fillOptions >] [<displayOptions >]

The example circle generated from the command in Listing 47 is shown in Figure 14.

Listing 47: Example definition of a circle primitive
[circle “cr” (70, 70) radius 35 filled fillColor red]

Figure 14: Circle primitive example

4.7 Array primitives

The array primitive supports the easy inclusion of arrays. Note that there are some specific operations on
arrays described in Section 5.1 on page 30.

Listing 48: Definition of the array primitive

<array >:

<arrayKey> "arrayID” [at] <nodeDefinition>
[color <color >] [fillColor <color >]
[elementColor <color >] [elemHighlight <color >]
[cellHighlight <color >] [horizontal | vertical]
length <nat+> { <intText> } [depth <nat>]
[<timeOffset >] [cascaded [within <nat+> ticks | ms]]
[hidden]

I

<arrayKey >:
array | field

The nodeDefinition defines the upper left corner of the array.
The interpretation of the different color tags for arrays is listed in Table 4.7 on the next page.

e horizontal and vertical define the orientation of the array. The default orientation is horizontal.
e The mandatory keyword length is followed by the number of elements of the array.

e The number of internationalText components must match the array length. For “undefined” cells, use
an empty string > as a value.

o cascaded defines that the individual cells shall be displayed one after the other instead of all at the
same time.

e the font specifies the base font to use for the array elements; see Section 2.6 on page 7.

4 DEFINING GRAPHIC PRIMITIVES 23

Parameter Visual effect

color the color for the cell outlines

fillColor the color used for filling the array cells (acting as a background color for the
elements)

elementColor the color in which the array elements are drawn.

elemHighlight | the color used for an elementif it is highlighted, e.g. to indicate an upcoming
swap operation. Highlighting is only performed at the explicit command by
the animation author.

cellHighlight | the color used for filling a highlighted cell.

Table 1: Interpretation of the array colors

The code in Listing 49 illustrates the behaviour of array primitives. First, we generate a new array called
“arr” with a red outline that contains five elements drawn in green. Then the array cell 1 (the second in the
array - counting starts at 0) is highlighted, leading to a yellow fill color. Finally, the elements from position
2 to 4 are highlighted (set in blue). The output is shown in Figure 15. Remember that the complete code for
the array primitive must span only one line; it is broken into three lines in Listing 49 only to make it more
readable.

Listing 49: Example commands for animating an array primitive

array “arr” (30, 20) color red fillColor grey elementColor green
elemHighlight blue cellHighlight yellow length 5 »2” »7” »11” 19~
”25” font Monospaced size 20

highlightArrayCell on “arr” position 1

highlightArrayElem on “arr” from 2 to 4

1111525

Figure 15: Array example, including cell and element highlight

4.7.1 Array marker

Array markers can be used to set a marker (an arrow pointing to an element) on an array. Note that there are
some specific operations on array markers, described in Section 5.1 on page 30.

Listing 50: Definition of the arrayMarker primitive

<arrayMarker >:
<markKey> ”indexID” on “arrayID” atIndex <nat>
[label <intText>] [short | normal | long] [color <color >]
[depth <nat>] [<displayOptions >]

<markKey >:
arrayMarker | arrayPointer | arrayIndex

(\

indexID is the name under which the array marker can be used in later commands. In contrast, arrayID must
be the valid ID of a previously defined array.

4 DEFINING GRAPHIC PRIMITIVES 24

The keyword atIndex must be followed by the index of the element to be pointed to. The value must be valid
by being in the interval [0, arrayID length - 1]. As in C, Java and several other languages, ANIMALSCRIPT
arrays always start at index O.

The optional label can be an arbitrary text, as specified in Section 3.1 on page 10.

The three optional keywords short, normal and long offer three different lengths of the arrow. This can help
in making the text of arrows more readable, especially if more than one array marker is installed on the same
array.

4.8 List elements

ANIMALSCRIPT supports list elements consisting of a value and an arbitrary number of pointers to other list
elements (or other graphical elements). Additionally, the position of the pointer box—above, below, to the
left or to the right of the value—can be defined, as shown in Listing 51.

Listing 51: Definition of the listElement primitive

\

<listelement >:
listelement ”ID” <nodeDefinition> [text <intText >]
pointers <nat> [position <pointerPos >]
[{ <ptrLocation> }] [prev ”prevID”] [next “nextID”]
[color <color >] [boxFillColor <color >]
[pointerAreaColor <color >]
[pointerAreaFillColor <color >]
[textColor <color >] [depth <nat >]
[<displayOptions >]

<pointerPos >:
top | left | right | bottom | none

<ptrLocation >:
ptr<nat> <nodeDefinition> | ptr<nat> to “targetID”

e The nodeDefinition defines the upper left border of the element.
o The definition of the optional infText value is given in Section 4.5.1 on page 18.

o The mandatory keyword pointers introduces the number of pointers, which must be in the interval [0,
255].

o The default pointer position is bottom.

o for ptrLocation, the text pt r with the appended pointer number is followed by the target coor-
dinates of the pointer. Coordinates may be given in absolute coordinates or using relative placement.
Note: pt r<nat> is written as one word, e.g. as ptrl or ptr3.

o The optional statements prev and next introduce the predecessor and predecessor, respectively, of the
current list element, which must be a valid ID of another list element.

e The color definitions specify the color of the object:
— the outline of the box containing the element value (color)

— the fill color of the box containing the element’s value (boxFillColor)

— the outline color of the box containing the pointers (pointerAreaColor)

since ANI-
MAL 2.3.19

4 DEFINING GRAPHIC PRIMITIVES

— the fill color of the box containing the pointers (pointerAreaFillColor)

— and the color of the element value (textColor).
Note that the color of the pointers is identical to the color attribute.
e The depth and displayOptions are described in Section 2 on page 4.
The example command in Listing 52 leads to the list element primitive shown in Figure 16.

Listing 52: Example definition of a listElement primitive

25

‘LlistElement ”le” (100, 100) text “Value” pointers 2 position bottom

ptrl (200, 200) ptr2 to “arr” boxFillColor grey

Walue

<

Figure 16: Example list element

4.9 Source Code embedding

The support for source or pseudo code in ANIMALSCRIPT is split into two different aspects:

e Declaring source code groups, including the setting of standard attributes,

e insertion of source code entries.

Listing 53: Declaration of the code types

<codeTypes >:
<codeGroup> | <codeLine> | <codeElem>

Before a code component can be inserted, the user must first declare a code group as described in Listing 54.

Listing 54: Definition of a codeGroup primitive

<codeGroup >:
codegroup “groupID” [at] <nodeDefinition>
[color <color >] [highlightColor <color >]
[contextColor <color >]
[depth <nat>] [<timeOffset >]

The components of the code group have the following meaning:

e grouplD is the name of the code group. The user must keep track of this name, as code entries can

only be shown in the context of a code group ID.

e nodeDefinition is the position of the upper left corner of the code group entries, thus defining the

starting point of all entries.

4 DEFINING GRAPHIC PRIMITIVES 26

e The colors of the code group follow the specification in Section 2.4 on page 6. They have the following
meanings:
— color - the standard color of all elements
— highlightColor - the color used when a code element is highlighted

— contextColor - the color used when a code element is highlighted in “context” mode. This can
be used to highlight the environment or context of a current command. For example, an anima-
tion author may want to highlight the current command in one color, and show the enclosing
statement—such as 1 £, for or method declaration—in a different color.

The context color is used whenever the highlightCode command introduced in Section 5.4 on
page 33 is used with parameter context.

e All other entries have been defined in Section 2.
There are two different ways for entering a new code entry, as shown in Listing 55

Listing 55: Definition for adding code lines to a code group

<codeLine >:
addCodeLine ”code” [name ”ID”] to “codeGrouplID”
[indentation <nat>] [<timeOffset >]

The addCodeLine command will insert a new code entry as a whole line of code. Note that the code group
ID must be given for entering elements!

indentation can be used to cause automatic indentation based on the font size used. An indentation level of
0 means “no indentation”. Each higher value will indent the text further to the right. timeOffset toggles the
delayed display of individual lines.

The second form of code input is shown in Listing 56.

Listing 56: Definition for adding code elements to a code group

<codeElem >:
addCodeElem “code” [name ”ID”] to “codeGrouplID”
[column <nat>] [indentation <nat>] [<timeOffset >]

The only difference between the two notations is the optional entry column, which allows the specification
of the entry in the appropriate position in the current code line. This is especially useful for multi-part
statements such as for that shall highlight the currently executed individual parts of the statement separately.
The code commands codeGroup, addCodeLine, and addCodeElem using the same ID belong together, as
they define the same code group, but span several lines. Therefore, they should always be placed in a
composite step using {}.

4 DEFINING GRAPHIC PRIMITIVES 27

4.10 Grid Primitives

A grid represents different three different visualizations of a two-dimensional data set: a plain ordering, a
matrice and a table. Grids are among the most versatile, but also the most complex data structures supported
in ANIMALSCRIPT.

Listing 57 shows the definition of a grid primitive in ANIMALSCRIPT. Please see Section 5.16 for details on
how to modify a grid.

Listing 57: Definition of the grid primitive

<grid >:
grid ”id” <nodeDefinition> lines <nat+> columns <nat+>
[style <gridStyle >]
[cellWidth <nat+>] [maxCellWidth <nat+>]
[cellHeight <nat+>] [maxCellHeight <nat+>] [fixedCellSize]
[color <color >] [textColor <color >] [borderColor <color>
[fillColor <color >] [highlightTextColor <color >]
[highlightFillColor <color >] [highlightBorderColor <color >]
[] [align <gridAlign >] <depth> <timeOffset>

Lt}

<gridStyle >:
plain | matrix | table

<gridAlign >:
left | center | right

(\

nodeDefinition describes the upper left corner of the grid.
lines, columns define the number of rows and columns of the grid. Both values must be at least 1.

style is a choice of the three default values plain, matrix and table. If no option is specified, plain is assumed.
A plain grid aligns only the elements, but draws no border or grid lines. A matrix places the matrix
lines with curved edges around the elements. Finally, a fable will place all elements into rectangular
boxes. See Figure 17 for an example of the three different styles.

cellWidth, maxCellWidth, cellHeight, maxCellHeight allow the user to specify the size of the cells. Both
cellWidth and cellHeight define the initial size, while maxCellWidth and maxCellHeight define the
maximum size of the cells. fixedCellSize can be used to define that the value used for cellWidth and
cellHeight are used for maxCellWidth and maxCellHeight, respectively.

color, textColor, borderColor, fillColor define the basic colors for the grid. color is used as a fall-back
value for the colors that the user has not specified. Intuitively, fextColor defines the color for the
lements, borderColor the color for the border (in a matrix or table), and fillColor represents the fill
color of the box containing a given grid element.

highlightTextColor, highlightFillColor, highlightBorderColor are the colors used if one or more ele-
ments (highlightTextColor), one or more cells (highlightBorderColor) or the border of the grid are
highlighted (highlightBorderColor).

font defines the font for the elements.

align uses the three values left, center and right to specify the alignment of the elements inside their cells.
the default alignment is left.

Listing 58 shows three example grids that will result in the display shown in Figure 17. The grid on the left
is created with the plain style, the center grid is a matrix and the grid to the right uses the table style.

since 2.3

4 DEFINING GRAPHIC PRIMITIVES 28

Listing 58: Example of three grid definitions

grid ”gridl” (10,10) lines 5 columns 5 style plain

setGridValue ”gridl1 [][]” 710" refresh

grid “grid2” (185,10) lines 5 columns 5 style matrix
setGridValue ”grid2[][]” ”8” refresh

grid 7grid3” (360,10) lines 5 columns 5 style table
setGridValue ”grid3[][]” 76” refresh

NS
Note that a grid defined as above appears “empty” and thus potentially invisible unless values are assigned to
the grid. See also Section 5.16 for details on working with grids and especially Section 5.16.1 for addressing
grid elements.

' ™
10 10 10 10 10 8§ 8 8 B 8 b |b |6 [6 b
10 10 10 10 10 b |6 |6 [B6 b
5 B & 8 8
10 10 10 10 10 B |6 |6 B 6
10 10 10 10 10 g 8 8 8 8 6 |6 |6 (B |6
10 10 10 10 10 § 8 8 8 8 6 |6 |6 |6 |6
& B 8 8 8
. -
Figure 17: Grid primitive examples
4.11 Graphs since 2.3

Listing 59 shows the definition of the graph primitive, which together with the grid primitive described in
Section 4.10 on the previous page is one of the most complex and expressive primitives in ANIMALSCRIPT.

Listing 59: Definition of the graph primitive

<graph>:
graph ”ID” size <nat+> [color <color >] [bgColor <color >]
[outlineColor <color >] [highlightColor <color >]
[elemHighlightColor <color >] [nodeFontColor <color >]
[edgeFontColor <color >] [directed] [weighted]
nodes ”{” [] { ”value” [at] <nodeDefinition> [”,”] } ”}”
edges "{” [{ 7(” <nat+> 7,” <nat+> [”,” <intText>] ”)” [”,”]”}”
[origin <nodeDefinition >] [showIndices] [depth <nat>] <timeOffset>

\

Please note that similar to the array and grid primitives, the size of a graph is fixed once it was defined.

color, bgColor, outlineColor define the basic colors of the graph. color is the basic color for a graph.
bgColor is the background color of each node. outlineColor is the color used for the edges and the
borders of the nodes.

highlightColor, elemHighlightColor are the colors for highlighting the nodes and edges (highlightColor)
and the values inside the nodes (elemHighlightColor).

4 DEFINING GRAPHIC PRIMITIVES 29

nodeFontColor, edgeFontColor are the colors for the value of the nodes and the edge weight (if any),
respectively.

directed, weighted allow the user to specify that the graph is directed (i.e., an edge from A to B does not
mean that there is an edge from B to A) and / or weighted (i.e., each edge has a weight or “cost”
associated with it).

Node positions start with the keyword nodes followed by a list of definitions placed inside curly braces.
Before the first entry—and only there—the font used for all nodes can be given. Each node definition
starts with the value, followed by the optional keyword ar and the nodeDefinition as described in
Section 2.2 on page 4. The individual entries are separated by a comma.

Edges are defined by the keyword edges followed by an opening brace and an optional definition of the font
for edge weigths. Each edge is a tuple or triplet of values, depending on whether the graph is weighted.
The first value represents the source node index of the edge (starting at 0), the second value represent
the index of the target node of the edge. If the graph is weighted, the third element is the weight of the
edge. The definition of the edges

origin can be used to translate the graph to the position given by the nodeDefinition following the keyword.

showlndices displays the index of each node inside the node. This feature is not primarily mreant for
productive uses, but can be used to help during the generation and validation of an animation.

Figure 18 shows an example graph generated by the code in Listing 60. Again, the line breaks in Listing 60
are only used for layout reasons; the full command must occupy exactly one line.

Listing 60: Example code for a graph primitive

graph “graph” size 5 directed weighted nodes { "A” (40, 100),
”B” (160, 100), "C” (40, 220), "D” (160, 220), "E” (100, 160) }
edges { (0, 1, ”15”), (0, 2, ”37), (1,3, 77”) (4,2,787), (2,0,7117) }

showIndices
H——>()

15

Figure 18: Graph primitive examples

ANIMALSCRIPT also supports several operations on graphs. These will be described in detail in Section 5.17
on page 43.

5 SUPPORTED OPERATIONS 30

S Supported Operations

ANIMALSCRIPT supports a wide selection of operations. The overview definition in Listing 61 gives a first
impression. In the course of this Cection, we will explore each type of operation in detail.

All operations allow the specification of an optional timing, which can define both an offset and a duration
for the operation - see Section 2.5 on page 7.

Listing 61: Definition of the animation effects

<operations >:
<arrayOp> | <clone> | <colorChangeTypes> | <delay>
| <echo> | <label> | <link> | <location>
| <merge> | <move> | <rotate> | <showTypes>
| <swap> | <setText> | <setFont> | <variableSupport>
| <assertion> | <gridOperations> | <graphOperations>

(S

5.1 Array Operations

The array operations defined in Listing 62 are supported:

Listing 62: Array operations overview

<arrayOp >:
<arrayPut> | <arraySwap> | <moveArrayMarker>
| <highlightArrayCell> | <highlightArrayElem >

5.1.1 Putting Elements in an Array

Listing 63 defines the notation for the arrayPut command.

Listing 63: Definition of the arrayPut command

<arrayPut >:
arrayPut ”value” on ”arrayID” position <nat>
[<timing >]

Using the arrayPut command, one can easily cause elements to be put in a given array (see Section 4.7 on
page 22 for information on how to define an array in ANIMALSCRIPT). The user only has to give the new
value for the element, the arrayID and the targetPosition. The timing is optional and can provide both offset
and duration.

ANIMALSCRIPT keeps track of the arrays and prints a warning if the specified position is invalid, for example
because the array ID was mistyped, or the user entered a position which is too small (< 0) or too large
(greater or equal to the array length as defined in the array declaration - see Section 4.7 on page 22).

Please note that this operations usually requires moving all components following the insertion position and
will thus cause a slightly changed layout of the whole array including its bounding box. Due to a possibly
large number of position lookups, the operation can become slow when using large arrays or many objects.

5.1.2 Swapping Array Elements

The arraySwap defined in Listing 64 supports easy swapping of array elements in any array defined as
described in Section 4.7 on page 22. The command requires the array ID and the two swap positions.

5 SUPPORTED OPERATIONS 31

Listing 64: Definition of the arraySwap command

<arraySwap >:
arraySwap on “arrayName” position <nat> with <nat>
[<timing >]

Please note that this operations usually requires moving all components lying between the two swapped
components and may thus cause a slightly changed layout of the whole array, but will not change the array’s
bounding box. Due to a possibly large number of position lookups, the operation can become slow when
using large arrays or many objects.

5.1.3 Moving Array Markers

Listing 65 presents the notation for updating array markers.

Listing 65: Definition of the commands for moving array markers

<moveArrayMarker >:
<moveMarkerKeyword> “markerID” to
[position <nat> | arrayEnd | outside] [<timing>]

<moveMarkerKeyword >:
moveArrayIndex | moveArrayMarker | moveArrayPointer
| movelndex | moveMarker | movePointer
| jumpArrayIndex | jumpArrayMarker | jumpArrayPointer
| jumpIndex | jumpMarker | jumpPointer

The large set of (equivalent) commands stems from the diverse notations found in related systems, and when
authors write about array indices. We recommend that you simply choose one tag and stick to it.

Using these commands, moving reference pointers to array cells is easily accomplished. The underlying
array and array marker must be defined as described in section 4.7. The command expects the array ID and
the target position.

There are three different operations for moving the array marker:

e To a given position in the array, i.e. an integer value in the interval [0, arrayID.length - 1],
o to the end of the array (the last array element),

o to the “outside” (slightly to the right of the last array element).

Timing is optional and can provide both offset and duration.
The jumpXXX commands are reserved for instanteous movements having a duration of 0. While ANIMAL-
SCRIPT is not very strict about this, it will reset the duration to 0 whenever jumpXXX is used.

5.1.4 Highlighting Array Cells or Elements

Listing 66 defines the notation for highlighting and unhighlighting array cells or elements. The highlighting
operation is usually employed to direct the end user’s attention towards the current elements, for example,
the two elements of the array just being compared.

ANIMALSCRIPT does not make a semantic difference between highlighting a “cell” (changing its fill color
to the cellHighlight color) and highlighting an “element” (changing its color to the elemHighlight color, as
defined in Section 4.7 on page 22. It is recommended to use the element-based operation when the attention
of the end user shall be drawn to the value of the element, e.g., because this is used in the current calculation.
Conversely, the cell should be highlighted it the focus is on the cell (position) rather than on the value inside
the cell.

5 SUPPORTED OPERATIONS 32

Additionally, by using a color such as grey as the cell highlight color, parts of the array that are currently
of no relevance can be “shadowed out”. This can be useful for recursive algorithms, such as Quicksort or
Binary Searching, to help the end user focus on the remaining “relevant” elements.

Listing 66: Definition of the commands for highlighting array cells or elements

<highlightArrayCell >:
<hlACellKeyword> on “arrayID” <aHighlightRange >
<timing>

<hlACellKeyword >:
highlightArrayCell | unhighlightArrayCell

<aHighlightRange >:
position <nat> | [from <nat>] [to <nat>]

<hilightArrayElem >:
<hlAElemKeyword> on “arrayID” <aHighlightRange >
<timing >

<hlAElemKeyword >:
highlightArrayElem | unhighlightArrayElem

These two very similar elements allow the highlighting or unhighlighting of array cells or elements. Apart
from the array ID, the user has to define the target of the effect as well as an optional timing. The affected
array elements may be either a fixed position within [0, arrayID.length — 1] or arange with the
two optional keywords from and fo. If neither is given, the range is assumed to cover the full array.

5.2 Object Cloning

Listing 67 defines the notation for the clone operation. This command supports the easy cloning of a given
object. The user has to provide a new location for the cloned element, as well as a new reference ID. The
standard display options apply.

Listing 67: Definition of the clone operation

<clone >:
clone “originallD” as “clonelD” [at] <nodeDefinition>
[<displayOptions >]

5.3 Color Change Operations

ANIMALSCRIPT supports the standard color change operations defined in Listing 68.

Listing 68: Definition of the different color change operations

<colorChangeTypes >:
<colorChange> | <codeColorChange>

<colorChange >:
color <oids> [type <colorType >] <color> [<timing >]

<colorType >:
”color” | ”fillColor” | "textColor” | “colorSetting”

(S

5 SUPPORTED OPERATIONS 33

Note that the effect can operation simultaneously on an arbitrarily long (non-empty) list of target IDs for
this operation. Some object types may provide additional color change types which are not listed here.
Additionally, some of the color types are not available for all objects, following common sense. For example,
applying a fillColor animator to a polyline is semantically incorrect.

The “colorSetting” entry can specify an arbitrary (but existing) color setting to be changed.

5.4 Code Operations

The color changing operations for code elemetns supported in ANIMALSCRIPT are defined in Listing 69.

Listing 69: Definition of the color change effects for code elements

<codeColorChange >:
<codeColorType> on “baseCodeGroup” line <nat>
[column <nat>] [context | region] [<timing >]

<codeColorType >:
highlightCode | unhighlightCode

Note that the user must provide the code group ID for changing the code color — even if it is for only a
single line! The optional column c statement is used for code elements, as opposed to whole code lines. The
context command will use the code context color instead of the code highlight color — see section 4.9 on
page 25.

Note: in previous versions of ANIMALSCRIPT, the keyword “row” was used, although “column” was meant.
This has now been corrected in the parser; the older notation is still parsed correctly, but now regarded as
deprecated.

Listing 70: Definition of the operation for showing or hiding a code group

<codeHide >:
hideCode “codelD” [<timeOffset >]

The hideCode command defined in Listing 70 is used to hide the display of a whole code group after an
optional offset. It is far more comfortable to use than manually hiding all elements of the code group, and
should thus be the preferred choice.

5.5 Delay Between Steps

For installing a customized delay between individual steps on a millisecond (ms) base, the delay command
defined in Listing 71 can be given in a separate line which must be outside composite steps:

Listing 71: Definition of delays between steps using delay

<delay >:
delay <nat> [ms] | delay click on “elemID”

This will cause the animation to wait i milliseconds before continuing with the next step. The notation

using click 2.0 is new in ANIMALSCRIPT 2.0. It will pause the animation until the user clicks on the since 2.0
object specified by the ID. Note that this operation is not yet properly implemented and left for further
implementation.

Caution: if you mistype the ID, the object is currently invisible, or it is completely occluded by other objects,

this will effectively freeze the animation.

\

5 SUPPORTED OPERATIONS 34

5.6 Printing Status Information

For printing status information, ANIMALSCRIPT provides the very useful echo command defined in Listing
72.

Listing 72: Definition of the echo command for debug output

<echo >:
echo location: <nodeDefinition >
| echo <boundsKeyword>: { <oids> }
| echo text: “text”
| echo value: { ”ID” }
| echo ids: { <oids> }
| echo visible
| echo rule: “keyword”
| echo unquotedText
<boundsKeyword >:
boundingBox | bounds

echo supports the following operations:

echo location: can be used to print out the location of any given node, with full support for relative place-
ment, for example echo location: offset (20, —30) from "A” SE

echo bounds: is used to print the bounding box of any object at the current animation state. Alternatively,
the keyword boundingBox: can be used. This can also be done for multiple objects at the same time:
echo bounds: ”A” ”B”

echo text: prints the text passed in, for example to explain the next output, or for debugging just when an
error occurs. For example, you can use echo text: ”All OK till now, Bounding Box of B’ is ...”

echo value: prints the value of a variable that has been assigned a value . This is currently only supported
by the optional Assertion extension package.

echo ids: prints the ID(s) belonging to a certain identifier. This is especially helpful during animation de-
velopment when one is dealing with a group of objects merged under a common label.

echo visible display the list of IDs of all currently visible objects.

echo rule: prints the rule syntax for an arbitrary element. The user has to provide the keyword starting the
rule, for example echo, within double quotes. Note that this only works if the rule database is up to
date and has been properly maintained by all authors.

echo followed by unquoted text will simply print the text following the echo keyword.

These commands are helpful both for debugging an animation if entries seem to be invisible (but actually are
only placed outside the animation window), and for better tuning of especially generated animations.

5.7 Element Grouping

To perform several operations on the same set of elements, it quickly becomes tedious to enumerate all
elements each time. Therefore, ANIMALSCRIPT offers grouping and ungrouping commands as shown in
Listing 73.

since 2.0

since 2.0

since 2.0

since 2.0

5 SUPPORTED OPERATIONS 35

Listing 73: Definition of the commands for grouping and ungrouping elements

<merge >:
<mergeKeyWord> ”targetID” { ”ID” }

<mergeKeyWord >:
group | merge | set | ungroup | remove

Simply choose between the merge / group / set operations for gathering elements under a new ID, or remove
/ ungroup to remove elements from a collection ID. Apart from the collection ID — which must not be in
use for merge, group, set, but must already be used for remove / ungroup —, the user only has to specify the
required object IDs.

5.8 Generating Navigation Labels
The label statement defined in Listing 74 can be used for generating navigation labels in a separate window.

Listing 74: Definition of the label operation

label “labelEntry”

L<label >:

Place this statement either within a composite step or after the statement you want to label. The labelEntry
will be added to ANIMAL’s Timeline Window and can be used for jumping directly to the referenced step.
5.9 List Operations

To manipulate the pointers or /inks used in a list, use the commands specified in Listing 75:

Listing 75: Definition of the setLink and clearLink commands

<link >:
setLink “elemID” [link <nat>] to “targetID” [<timing >]
| setLink “elemID” [link <nat>] <nodeDefinition> [<timing >]
| clearLink “elemID” [link <nat>] [<timing >]

setLink will set the link of the given object to the target object, while clearLink will reset the link. Note

that if the list elements have more than only one link, the user should always give the optional statement

link followed by the number of the link to be used. ANIMALSCRIPT does not enforce this and will always

assume the user meant the first pointer. However, for consistency and readability purposes, it is better to

explicitly state the link number in all cases.

Link numbers are counted starting with 1.

ANIMALSCRIPT 2.0 also allows the user to set the pointer to an arbitrary location. since 2.0

5.10 Move Operations

One of the most versatile operations, move commands come in several subtypes in ANIMALSCRIPT, includ-
ing the synonymous keywords move, translate. See Listing 76 for an overview of the move types.

Listing 76: Overview of the move types

<move>:
<moveVia> | <moveAlong> | <moveTo>

<moveKeyword >:
move | translate

5 SUPPORTED OPERATIONS 36

Two common parts used for all move operations are specified in Listing 77: type and corner.

Listing 77: Definition of the method subtype and the move corner

<methodSpec >:
type “typeName”

<corner >:
corner <direction >

Many primitives offer special move types. For a complete list, see Appendix A.1 on page 45 or consult the
ANIMAL Home Page at http://www.algoanim.info/Animal2.

5.10.1 Move Via ...

Listing 78 defines the notation for moving an object via another object.

Listing 78: Definition of the move via command

<moveVia>:
<moveKeyword> <oids> [<corner >] [<methodSpec >]
via “oid” [<timing >]

The basic move operation, this will simply move the given objects via the object with ID oid. oid must be
a valid MoveBase, that is, it must be any of the various subtypes of polyline, polygon or arc.
5.10.2 Move Along ...

Listing 79 defines the notation for the move along command. This move subtype allows the user to inline
a component definition along which the move is to take place. Simply use the command by choosing the
keyword, target IDs, optional move corner and possibly move method, and provide the component.

Listing 79: Definition of the move along command

<moveAlong >:
<moveAlongPolyline> | <moveAlongArc>

<moveAlongPolyline >:
<moveKeyword> <oids> [<corner >] [<methodSpec >]
along <lineTag> <nodeDefinition> { <nodeDefinition> }
[<timing >]

<moveAlongArc >:
<moveAlongArcType> | <moveAlongCircleType>

<moveAlongArcType >:
<moveKeyword> <oids> [<corner >] [<methodSpec >]
along <arcType> <nodeDefinition> <int> <int>
<int> <int> [<timing >]

<moveAlongCircleType >:
<moveKeyword> <oids> [<corner >] [<methodSpec >]
along <circleType> <nodeDefinition> <int> <int>
<int> [<timing >]

5 SUPPORTED OPERATIONS 37

ANIMALSCRIPT allows moves along either polyline or arc-based objects, supporting both ellipse and circle
segments. See Listing 80 for the valid type names for the associated move along command subtypes. Note
that the notation for providing the move object inlined is very similar to the specification as described in the
object sections.

Listing 80: Definition of the keywords for the move along move object type

<arcType >:
<arcName> | ellipse

<circleType >:
circle | <circleSegName>

5.10.3 Move To ...

Using the move to notation defined in Listing 81, the user can specify that all object IDs passed are to be
moved to the given target node. Of course, the node definition can also use relative coordinates.

Listing 81: Definition of the move to command

<moveTo>:
<moveKeyword> <oids> [<corner >] [<methodSpec>]
to <nodeDefinition> [<timing >]

The user should keep two aspects in mind about this command:

e all objects will have their left upper point of the bounding box at precisely the same spot after the
operation. This usually also means that the space below and to the right of this spot may become
cluttered with objects, and that many objects may be at least partially obstructed by others.

e as the objects to be moved can lie far apart, this operation is transformed into several move operations—
usually as many as the number of given objects IDs. These operations will take place using the same
timing.

5.11 Rotation Operation

The rotate command specified in Listing 82 allows the user to rotate entries either around a point passed
via its oid, or around an inclined rotation center. Keep in mind that rotations are performed in mathematical
order, i.e. counterclockwise.

Listing 82: Definition of the rotate command

<rotate >:
rotate <oids> around ”id” [degrees <int>] [<timing >]
| rotate <oids> center <nodeDefinition> [degrees <int >]
[<timing >]

The optional degrees statement expects values between 0 and 360, but is rather lax in its parsing.

Please note that ANIMALSCRIPT only supports the rotation of polyline- or polygon-based components in-
cluding all subtypes. Also note that the oid must be an ID of a point object—all other objects will lead to an
error message.

5 SUPPORTED OPERATIONS 38

5.12 Show / Hide Operation

The show and hide commands and their counterparts, as defined in Listing 83, modify the visibility of objects.
Somewhat unsurprisingly, show makes components visible, and hides causes them to “disappear”. Note that
the operations for hiding code have already been defined in Section 5.4 on page 33.

Listing 83: Definition of the show / hide commands

<showTypes >:
<simpleShow> | <codeHide> | <selectiveHide >

<simpleShow >:
<showMode> <oids> [<timing >]

<codeHide >:
hideCode ”codelD” [<timeOffset >]

<selectiveHide >:
hideAll [<timing >]
| hideAllBut { <oids> } [<timing >]

<showMode >:
show | hide

NS
As of ANIMAL version 2.0, ANIMALSCRIPT also offers operations for hiding all objects or all objects except
for a list of IDs. This is very helpful if the user wants to start the next step with a “clean plate”, except for a
few objects.

5.13 Swap Operation

The swap command defined in Listing 84 exchanges the object IDs of two elements. This will not have any
visible effect, but can prove very helpful if the animation is generated by programs. Note that one should
never use swap on array or code elements — the IDs are updated automatically whenever an operation takes
place, for example arraySwap.

Listing 84: Definition of the swap command

<swap >:
<swapKeyword> ”o0id1” ”0id2”

<swapKeyword >:
swap | exchange

5.14 Changing the Text or Font of a Text Component

Listing 85 defines the syntax for the set7Text and setFont commands. They can be used to change the text or
font, respectively, of a text component, and should be self-explanatory.

Listing 85: Definition of the sefText command

<setText >:
setText [of] "o0id” [<methodSpec>] to <intText> <timing>

<setFont >:
setFont [of] "o0id” [to] <timing>

since 2.0

since 2.0

5 SUPPORTED OPERATIONS 39

5.15 Operations on Variables

Listing 86 defines the notation for operations on variables supported in ANIMAL 2.2+.

Listing 86: Operations on variables

<variableSupport >:
variable 7id” [type <varType >]
| assign ”id” = <int>
| <assertion>

<varType >:
int | double | String

<assertion >:
<assertKeyword> <assertionPart >

<assertKeyword >:
assert | check
<assertionPart >:
variable <comparator> <int>
| <assertionPart> <boolOperator> <assertionPart>

<comparator >:
= | = | < | <=| >]| >

<boolOperator >:
& |]

Variables are declared with the keyword variable, followed by the name of the variable in double quotes.
The optional type can be defined as int, double or String; by default, all values are regarded as String.
Values are assigned using the assign keyword. Additionally, rudimentary conditions can be checked using
the assert or check keywords (which are identical; pick the one you prefer). If the condition specified in
assert is not evaluated to true, an error will be printed.

Note: at the moment, the support for variables as outlined here is under revision and may change in future
versions. Additionally, the current implementation is not bug-free.

5.16 Grid Operations
5.16.1 Addressing Grid Positions

As already shown in Listing 58 on page 28, ANIMALSCRIPT offers powerful ways to address a grid. In
contrast to most other data structures, a grid is initially empty (no visible elements), until elements are
assigned to the positions.

Elements in a grid can be address in a set of different ways. The following ways to address a grid are sup-
ported by ANIMALSCRIPT, where we assume that “grid” is the name for a valid grid and that all addressed
positions actually exist. Keep in mind that rows and columns both start at 0. Listing 87 provides the BNF
for the notation.

Listing 87: Definition of the cellldentifier for accessing grid elements

”id[<nat >][<nat >]”

L<cellldentifier >:

since 2.2

since 2.3

5 SUPPORTED OPERATIONS 40

A single cell is addressed by giving the name of the basic grid, followed by the index of the cell enclosed
in one pair of brackets each. As with any other name in ANIMALSCRIPT, the full name has to be
placed in double quotes, for example as “grid[3] [2]” to address the cell in the fourth row and
third column.

A complete column is addressed by giving the name of the basic grid, followed by an empty pair of brackets
(in order to match all rows) and finally the chosen column number placed in a pair of brackets. For
example, “grid[] [2] will access all elements in column 2 of the matrix, independent of their row
number.

A complete row is addressed by giving the name of the basic grid, followed by the chosen row number in
a pair of brackets and ending with an empty pair of brackets (in order to match all columns). For
example, “grid[3] []” will access all elements in row 3 of the matrix, independent of their column
number.

The complete grid can be address by adding rwo pairs of empty brackets to the grid name. Thus, “grid[]1[]”
will address the complete grid.

Listing 88 shows the definition and access for four example grids, all of which are defined using the fable
style. The values ¢/-#4 illustrate the four ways to address a grid in the order presented above. Figure 19
shows the results of the operations.

Listing 88: Example of addressing grid positions

{
grid 7tb1” (20 , 20) lines 4 columns 5 style table
grid 7tb2” (180, 20) lines 4 columns 5 style table
grid 7tb3” (20 , 150) lines 4 columns 5 style table
grid "tb4” (180, 150) lines 4 columns 5 style table
setGridValue ”tb1[3][0]” ”t1” refresh
setGridValue 7tb2[] [0]” ”t2” refresh
setGridValue 7"tb3[3][]” ”t3” refresh
setGridValue "tb4[][] ”t4” refresh
}
t2
t2
12
tl 12

t4 [t4 [t4 [t4 [t4
t4 [t4 [t4 [t4 [t4
t4 [t4 [t4 [t4 [t4
t3 [t3 [t3 [t3 [t3 | [t4 [t4 [t4 [t4 [t4

Figure 19: Grid addressing examples

5 SUPPORTED OPERATIONS 41

5.16.2 Refreshing the Display of a Grid

All operations that may result in a redisplay of a grid, such as assigning new values to a grid, have a parameter
refresh. If this parameter is not given, the operation will be executed without re-layouting the grid. Thus, the
newly inserted value—if somewhat larger than the previous value—may overlap with a neighboring cell.

If multiple operations are used in the same animation step, e.g. by initializing a grid cell by cell, it makes
sense to provide the refresh parameter only with the last command that modifies the grid. Each refresh
operation requires a recalculation of the grid borders and layout and thus is costly in terms of runtime;
avoiding unneccesary refreshs can therefore reuce the load time for an animation.

In Listing 88, the refresh parameter was given each time. However, this was necessary because we were
working on four different grids: each refresh command affects only the grid that was associated with the
current command.

5.16.3 Updating a Grid Value

Grid values can be updated with the setGridValue command defined in Listing 89. Please see Section 5.16.1
for the different ways how a grid can be addressed using the cellldentifier. The intText entry is a standard
ANIMALSCRIPT text. Please also see Section 5.16.2 for a description of the optional refresh command and
Figure 19 on the previous page for an example of the setGridValue command.

As a special feature, the text to be inserted will be inserted character by character if the animation effect has
been specified with a non-zero duration. If the refresh command is given, the borders of the cells will also
be animated during the transition (if necessary).

Listing 89: Definition for setting a grid value

<setGridValue >:
setGridValue <cellldentifier > <intText> [refresh] <timing>

5.16.4 Highlighting Grid Cells or Elements

Grid cells and elements can be highlighted or unhighlighted using the (un-)highlightGridCell and (un-
JhighlightGridElem commands. These operations only change the color of the cell or element and thus do
not affect the size of the grid cells. Therefore, this operation does not contain the optional refresh command
found in many other grid operations.

Listing 90: Definition of the commands for (un-)highlighting grid elements/cells

<highlightGridComponent >:
highlightGridCell <cellldentifier > <timing>
| highlightGridElem <cellldentifier > <timing>
| unhighlightGridCell <cellldentifier > <timing>
| unhighlightGridElem <cellldentifier > <timing>

5.16.5 Changing the Color of Grid Cells or Elements

In contrast to arrays, each grid cell stores its own text, border and fill color, as well as the associated highlight
colors. These colors can be updated individually using the setGridColor command defined in Listing 91. If
a duration is specified, the color will be linearly interpolated between the start and the end color. Changing
the highlight color (no matter of which aspect) will only become visible if the associated cell or element is
highlighted.

For a definition of the meaning of the different color names, please see Section 4.10 on page 27.

5 SUPPORTED OPERATIONS 42

Listing 91: Definition for setting the color of a grid cell or element

<setGridColor >:
setGridColor <cellldentifier > [color <color >]
[textColor <color >] [fillColor <color >]
[highlightTextColor <color >] [highlightBackColor <color >]

5.16.6 Aligning Grid Values

Listing 92 defines the command for aligning the contents of a given cell. This operation requires the re-
calculation of the positions of the element. If the refresh command is give, the complete display will be
re-layoutet for consistency reasons (see Section 5.16.2 on the previous page for more information about the
refresh command).

Listing 92: Definition for aligning grid values

<alignGridValue >:
alignGridValue <cellldentifier > <gridAlign> [refresh] <timing>

If a duration is specified and the refresh command was given, the realignment of the element(s) will be
animated.

5.16.7 Changing the Font of a Grid Element

Listing 5.16.7 defines the notation for changing the font of a given grid element. Please see Section 5.16.1
on page 39 for information on how to specify the target element(s) using the cellldentifier.

Changing the font will often require a recalculation of the grid cell size, so that the command also supports
the refresh command. If refresh is not specified, the font will be changed, but the size of the cells will remain
as before—and may thus become too small or too large.

Listing 93: Definition for changing the font of a grid element

<setGridFont >:
setGridFont <cellldentifier > [refresh]
[within <nat> [ticks | ms]]

If a duration is specified and the refresh command was given, the font change will be animated by the update
of the grid cell. At the end of the duration, the font will change to the target value; there will be no size
interpolation or “font interpolation”.

5.16.8 Swapping Grid Values

The swapGridValues command defined in Listing 94 supports swapping individual cells, columns rows or
even complete grids. The elements to be swapped “fly” to their respective target position; the border and
background elements and colors are not affected. All other cell properties, such as the element font, remained
tied to the grid position and thus do not “follow” the swapped value.

Listing 94: Definition of the swapGridValues command

<swapGridValues >:
swapGridValues <cellldentifier > and
<cellldentifier > [refresh] <timing>

The two cellldentifiers may refer to different grids. However, they must affect the same number and type of
elements, so that only the following swaps are possible:

5 SUPPORTED OPERATIONS 43

e individual cell swapped with an individual cell,
e a single column of length n is swapped with a different column with the same length,

e arow of length n is swapped with another row of the same length.

If a timing is given, the move of the elements is animated. The affected cells will be adapted while the new
values are still “on their way”, to ensure that the cell sizes will fit the elements when they arrive.

5.17 Graph Operations

Listing 95 presents the operations available on graphs.

Listing 95: Operations on graph primitives

<graphOperations >:
<edgeTransformation> | <changeWeight> | <nodeTransformation>

<edgeTransformation >:
highlightEdge on ”ID” [<methodSpec>] { ”(” <int> ”,” <int> ”)” }
| unhighlightEdge on "ID” [<methodSpec>] { (" <int> ”.,” <int> 7)” }

<changeWeight >:
setEdgeWeight [of] 7"ID” edge ”(” <int> ”,” <int> ”)” to <int>

<nodeTransformation >:
highlightNode on ”ID” [<methodSpec>] nodes { <int> } <timing>
| unhighlightNode on ”ID” [<methodSpec>] nodes { <int> } <timing>

\

Edges can be highlighted and unhighlighted using the (un-)highlightEdge command, giving the graph ID and
the set of edges to be (un-)highlighted. Each edge is given as a tuple consisting of the index of the start and
target node, placed in parentheses and separated by a comma.

To adapt the weight of an edge, use setEdgeWeight. The command uses the same notation for specifying the
edge as described in the previous paragraph.

Additionally, nodes can be highlighted or unhighlighted. Here, the list of nodes to be highlighted is given as
a sequence of the node indices.

6 SUPPORTED COLOR NAMES 44

6 Supported Color Names

Page 6 contains a list of the predefined color names. The color names gained by dissolving the pure colors
are not given in bold and usually end in a number from 2 to 4, with 4 being the darkest shade.

Color Name Color Value Color Name Color Value
R G B R G B
black 0 0 0 greend 0 144 0
blue 0 0 255 light Gray 192 192 192
blue2 0 0 208 light_blue 135 206 255
blue3 0 0 176 magenta 255 0 255
blue4 0 0 144 magenta2 208 0 208
brown2 192 96 0 magenta3 176 0 176
brown3 160 64 0 magentad 144 0 144
brown4 128 48 0 orange 255 200 O
cyan 0 255 255 pink 255 175 175
cyan2 0 208 208 pink2 255 192 192
cyan3 0 176 176 pink3 255 160 160
cyand 0 144 144 pink4 255 128 128
dark Gray 64 64 64 red 255 0 0
gold 255 215 O red2 208 O 0
gray 128 128 128 red3 176 0 0
green 0 255 O red4 144 0 0
green2 0 208 O white 255 255 255
green3 0 176 0 yellow 255 255 0

A SPECIFIC METHODS

A Specific Methods
A.1 Move Methods

45

The following operations are available for the move command. The default method name if none is specified
is always translate.

’ Type Method \ Description
Arc translate moves the object “as is”
Arc translateRadius changes the arc’s radius
Arc translateAngle changes the arc’s angle
Arc translateStartAngle | changes the arc’s start angle
ListElement| translate moves the object “as is”
ListElement| setTip sets the tip of the first pointer
ListElement| translateWithFixed- | move the object without changing the location of
Tip the pointer(s)
ListElement| translateWithFixed—- | move the object without changing the
Tip #1 pointer number i (substitute a value in [1,
nrPointers] for i)
ListElement| setTip #1 Set the pointer i (with 1 being the first pointer)
ListElement| translateWithFixed- | move the object without changing the location of
Tips i J k... the pointers given (separated by a single space)
ListElement| setTips i j k... Set the pointers numbered i, j, k - specify as
many as wanted, separated with a single space
Point translate move the point
Polyline or | translate move the complete object “as is”
Polygon
Polyline or | translate #i translate only node i of the polyline or polygon.
Polygon The number count starts at 1
Polylineor | translateNodes i j translate only the given nodes. The user may spec-
Polygon ify as many as wanted, separated by a single space.
Note that the node count starts with 1.
Polyline or | translateWithFixed- | translate the objects while leaving the specified
Polygon Nodes i j k nodes at their current location. The user may spec-
ify as many as wanted, separated by a single space.
Note that the node count starts with 1.
Text translate move the component “as is”.

A SPECIFIC METHODS

A.2 Color Change Methods

46

The following operations are available for the color command. The default method name if none is specified

is always color.

Type

Method

Description

Arc

color

Change the color of
the arc outline

Arc

textColor

Change the color of
the (optional) arc text

Arc

fillColor

Change the (op-
tional) fill color of a
closed and filled arc

Arc

colors: color,

textColor

Change both color
and (optional) text
color

Arc

colors: color,

fillColor

Change both color
and (optional) fill
color

Arc

colors:

textColor,

fillColor

Change both optional
text and fill color

Arc

colors: color,

textColor, fillColor

Change the arc’s out-
line, text and fill
color

Polyline / Polygon

color

Change the object’s
outline color

Polygon

fillColor

Change the object’s
fill color (only effec-
tive for filled poly-
gons!)

Polygon

colors: color,

fillColor

Change the object’s
outline and fill color,
if filled

B COMPLETE BNF

B Complete BNF

47

<animalScriptFile >:
<fileHeader> { <command> \n}

<fileHeader >:
%Animal <double> [<nat>x<nat>] [\n <titleInfo >]
[\n <authorInfo >]

<titleInfo >:
title “title as a string”

<authorInfo >:
author “author name including EMail address”

<command >:
<objectPrimitives > | <operations>
| "{> | ’}” | <languageSupport> | <extensionCommand>

<objectPrimitives >:
<arcTypes> | <array> | <arrayMarker> | <codeTypes>
| <listelement> | <point> | <polygonTypes>
| <polyline> | <text> | <grid> | <graph>

<operations >:
<arrayOp> | <clone> | <colorChangeTypes> | <delay>
| <echo> | <label> | <link> | <location>
| <merge> | <move> | <rotate> | <showTypes>
| <swap> | <setText> | <setFont> | <variableSupport>
| <assertion> | <gridOperations> | <graphOperations>

<arcTypes >:
<arc> | <circleSeg> | <ellipse> | <circle>

<arc >:
<arcName> ”ID” <nodeDefinition >
radius <nodeDefinition> [angle <int >]
[starts <int>] [clockwise | counterclockwise]
[color <color >] [depth <nat >]
[<closedOptions> [<fillOptions >] | <arrowOptions >]
[<displayOptions >]

<arcName >:
arc | ellipseseg | ellipsesegment

<circleSeg >:
<circleSegName> ”ID” <nodeDefinition>
radius <int> [angle <int>] [starts <int >]
[clockwise | counterclockwise]
[color <color >] [depth <nat >]
[<closedOptions> [<fillOptions >] | <arrowOptions >]

B COMPLETE BNF

[<displayOptions >]

<circleSegName >:
circleseg | circlesegment

<ellipse >:
ellipse ”ID” <nodeDefinition> radius <nodeDefinition>
[color <color >] [depth <int >]
[<fillOptions >] [<displayOptions >]

<circle >:
circle ”ID” <nodeDefinition> radius <int>
[color <color >] [depth <nat >]
[<fillOptions >] [<displayOptions >]

<array >:

<arrayKey> "arrayID” [at] <nodeDefinition>
[color <color >] [fillColor <color >]
[elementColor <color >] [elemHighlight <color >]
[cellHighlight <color >] [horizontal | vertical]
length <nat+> { <intText> } [depth <nat>]
[<timeOffset >] [cascaded [within <nat+> ticks | ms]]
[hidden]

i)

<arrayKey >:
array | field

<arrayMarker >:
<markKey> ”indexID” on “arrayID” atIndex <nat>
[label <intText >] [short | normal | long] [color <color >]
[depth <nat>] [<displayOptions >]

<markKey >:
arrayMarker | arrayPointer | arrayIndex

<codeTypes >:
<codeGroup> | <codeLine> | <codeElem>

<codeGroup >:
codegroup “groupID” [at] <nodeDefinition>
[color <color >] [highlightColor <color >]
[contextColor <color >]
[depth <nat>] [<timeOffset >]

<codeLine >:
addCodeLine ”code” [name ”ID”] to ”codeGroupID”
[indentation <nat>] [<timeOffset >]

<codeElem >:
addCodeElem “code” [name “ID”] to “codeGroupID”
[column <nat>] [indentation <nat>] [<timeOffset >]

48

B COMPLETE BNF

<listelement >:
listelement ”ID” <nodeDefinition> [text <intText >]
pointers <nat> [position <pointerPos >]
[{ <ptrLocation> }] [prev "prevID”] [next “nextID”]
[color <color >] [boxFillColor <color >]
[pointerAreaColor <color >]
[pointerAreaFillColor <color >]
[textColor <color >] [depth <nat >]
[<displayOptions >]

<pointerPos >:
top | left | right | bottom | none

<ptrLocation >:
ptr<nat> <nodeDefinition> | ptr<nat> to “targetID”

<point >:
point “pointID” <nodeDefinition> [color <color >]
[depth <nat>] [<displayOptions >]

<polygonTypes >:
<square> | <rect> | <triangle> | <polygon>

<square >:
square "ID” <nodeDefinition> <nat+>
[color <color >] [depth <nat >]
[<fillOptions >] [<displayOptions >]

<rect >:
<absoluteRectangle> | <relativeRectangle >

<absoluteRectangle >:
rectangle “ID” <nodeDefinition> <nodeDefinition>
[color <color >] [depth <nat >]
[<fillOptions >] [<displayOptions >]

<relativeRectangle >:
<relRectName> ”ID” <nodeDefinition> <nodeDefinition >
[color <color >] [depth <nat >]
[<fillOptions >] [<displayOptions >]

<relRectName >:
relrect | relrectangle

<triangle >:
triangle ”ID” <nodeDefinition> <nodeDefinition >
<nodeDefinition> [color <color >] [depth depthVal]
[<fillOptions >] [<displayOptions >]

<polygon >:
polygon ”ID” <nodeDefinition> <nodeDefinition >
{ <nodeDefinition> } [color <color >]

49

B COMPLETE BNF

[depth <nat>] [<fillOptions >]
[<displayOptions >]

<polyline >:

<lineTag> “lineID” <nodeDefinition> { <nodeDefinition> }

[color <color >] [depth <nat >]
[<arrowOptions >] [<displayOptions >]

<lineTag >:
polyline | line

<text >:
text "ID” <intText> [at] <nodeDefinition>
[centered | right] [color <color >] [depth <nat>]
 [boxed] [<displayOptions >]

<arrayOp >:
<arrayPut> | <arraySwap> | <moveArrayMarker>
| <highlightArrayCell> | <highlightArrayElem >

<arrayPut >:
arrayPut “value” on “arrayID” position <nat>
[<timing >]

<arraySwap >:
arraySwap on “arrayName” position <nat> with <nat>
[<timing >]

<moveArrayMarker >:
<moveMarkerKeyword> “markerID” to
[position <nat> | arrayEnd | outside] [<timing >]

<moveMarkerKeyword >:
moveArrayIndex | moveArrayMarker | moveArrayPointer
| moveIlndex | moveMarker | movePointer
| jumpArrayIndex | jumpArrayMarker | jumpArrayPointer
| jumpIndex | jumpMarker | jumpPointer

<highlightArrayCell >:
<hlACellKeyword> on “arrayID” <aHighlightRange >
<timing >

<hlACellKeyword >:
highlightArrayCell | unhighlightArrayCell

<aHighlightRange >:
position <nat> | [from <nat>] [to <nat>]

<hilightArrayElem >:
<hlAElemKeyword> on “arrayID” <aHighlightRange >
<timing>

50

B COMPLETE BNF

<hlAElemKeyword >:
highlightArrayElem | unhighlightArrayElem

<clone >:
clone “originallD” as “clonelD” [at] <nodeDefinition>
[<displayOptions >]

<colorChangeTypes >:
<colorChange> | <codeColorChange>

<colorChange >:
color <oids> [type <colorType >] <color> [<timing >]

<colorType >:
”color” | ”fillColor” | “textColor” | ”colorSetting”

<codeColorChange >:
<codeColorType> on “baseCodeGroup” line <nat>
[column <nat>] [context | region] [<timing >]

<codeColorType >:
highlightCode | unhighlightCode

<delay >:
delay <nat> [ms] | delay click on “elemID”

<echo >:

echo location: <nodeDefinition>

| echo <boundsKeyword>: { <oids> }
| echo text: “text”

| echo value: { ”ID” }
| echo ids: { <oids> }
| echo visible

| echo rule: “keyword”
| echo unquotedText

<boundsKeyword >:
boundingBox | bounds

<label >:
label "labelEntry”

<link >:
setLink “elemID” [link <nat>] to “targetID” [<timing >]
| setLink “elemID” [link <nat>] <nodeDefinition> [<timing >]
| clearLink “elemID” [link <nat>] [<timing >]

<location >:
<locationKeyword> ”locationID” [at] <nodeDefinition>

| moveLocation “locationID” [to] <nodeDefinition>

<locationKeyword >:

51

B COMPLETE BNF

location | defineLocation | defLocation

<merge >:
<mergeKeyWord> ”targetID” { ”ID” }

<mergeKeyWord >:
group | merge | set | ungroup | remove
<move>:

<moveVia> | <moveAlong> | <moveTo>

<moveKeyword >:
move | translate

<moveVia>:
<moveKeyword> <oids> [<corner >] [<methodSpec>]
via 7o0id” [<timing >]

<moveAlong >:
<moveAlongPolyline> | <moveAlongArc>

<moveAlongPolyline >:
<moveKeyword> <oids> [<corner >] [<methodSpec >]
along <lineTag> <nodeDefinition> { <nodeDefinition> }
[<timing >]

<moveAlongArc >:
<moveAlongArcType> | <moveAlongCircleType>

<moveAlongArcType >:
<moveKeyword> <oids> [<corner >] [<methodSpec>]
along <arcType> <nodeDefinition> <int> <int>
<int> <int> [<timing >]

<moveAlongCircleType >:
<moveKeyword> <oids> [<corner >] [<methodSpec >]
along <circleType> <nodeDefinition> <int> <int>
<int> [<timing >]

<moveTo>:
<moveKeyword> <oids> [<corner >] [<methodSpec >]
to <nodeDefinition> [<timing >]

<methodSpec >:
type “typeName”

<corner >:
corner <direction >

<arcType >:
<arcName> | ellipse

52

B COMPLETE BNF

<circleType >:
circle | <circleSegName>

<rotate >:
rotate <oids> around “id” [degrees <int>] [<timing >]
| rotate <oids> center <nodeDefinition> [degrees <int >]
[<timing >]

<showTypes >:
<simpleShow> | <codeHide> | <selectiveHide >

<simpleShow >:
<showMode> <oids> [<timing >]

<codeHide >:
hideCode “codelD” [<timeOffset >]

<selectiveHide >:
hideAll [<timing >]
| hideAllBut { <oids> } [<timing >]

<showMode >:
show | hide
<swap >:

<swapKeyword> “oidl” ”o0id2”

<swapKeyword >:
swap | exchange

<languageSupport >:
supports { “languageKey” }

[\n <resourceKey> "fileNameWithoutExtension”]

<resourceKey >:

resource | bundle | resourceBundle
<intText >:

“text” | key: “textResourceKey” | ({ key: "text” })
<color >:

black | blue | blue2 | blue3 | blued4 | brown2

| brown3 | brown4 | cyan | cyan2 | cyan3 | cyand
| dark Gray | gold | green | green2 | green3

| greend | light Gray| light_blue | magenta

| magenta2 | magenta3d | magentad | orange | pink
| pink2 | pink3 | pink4 | red | red2 | red3

| red4 | white | yellow | (<nat>, <nat>, <nat>)

<displayOptions >:
hidden | <timeOffset>

53

B COMPLETE BNF

<timeOffset >:
after <nat> [ticks | ms]

<timing >:
[<timeOffset >] [within <nat> [ticks | ms]]

<fontName >:
Serif | SansSerif | Monospaced

<nodeDefinition >:
(<int >, <int>) | <offset> | move (<int>, <int>)

<offset >:
offset (<int>, <int>) from “referencelD” node <nat+>
| offset (<int>, <int>) from ”“referencelD” <direction>
| offset (<int>, <int>) from “locationID”
| offset (<int>, <int>) from “referencelID”
baseline [start | end]

<direction >:
NW | N|NE|W|C|E|SW]| S | SE
| Northwest | North | Northeast | West
| Middle | Center | East | Southwest
| South | Southeast

<arrowOptions >:
[fwArrow] [bwArrow]

<closedOptions >:
closed

<fillOptions >:
filled [fillColor <color >]

:
[font <fontNames>] [size fontSize] [bold] [italic]

<oids >:
{ ”targetOID” }

<nat >:
ol 1| ... |

<int >:
<nat> | —<nat> | (<double> <operator> <double >)
| ”objectID” <objectPosition>

<operator >:
+ | = %= |/

<objectPosition >:
x | y | width | height

54

B COMPLETE BNF

<extensionCommand >:

<setText >:
setText [of] "o0id” [<methodSpec>] to <intText> <timing>

<setFont >:
setFont [of] "o0id” [to] <timing>

<variableSupport >:
variable 7id” [type <varType >]
| assign 7id” = <int>
| <assertion>

<varType >:
int | double | String

<assertion >:
<assertKeyword> <assertionPart >

<assertKeyword >:
assert | check

<assertionPart >:
variable <comparator> <int>
| <assertionPart> <boolOperator> <assertionPart>

<C0mparat0r >
== | |= ‘ < | <= ‘ >= | >

<boolOperator >:
& | ||

<grid >:
grid ”id” <nodeDefinition> lines <nat+> columns <nat+>
[style <gridStyle >]
[cell Width <nat+>] [maxCellWidth <nat+>]
[cellHeight <nat+>] [maxCellHeight <nat+>] [fixedCellSize]
[color <color >] [textColor <color >] [borderColor <color>
[fillColor <color >] [highlightTextColor <color >]
[highlightFillColor <color >] [highlightBorderColor <color >]
[] [align <gridAlign >] <depth> <timeOffset>

LR}

<gridStyle >:
plain | matrix | table

<gridAlign >:
left | center | right

<gridOperations >:
<setGridValue> | <setGridColor>
| <setGridFont> | <swapGridValues>

55

B COMPLETE BNF 56

| <highlightGridComponent> | <alignGridValue>

<cellldentifier >:
”id[<nat >][<nat >]"

<setGridValue >:
setGridValue <cellldentifier > <intText> [refresh] <timing>

<setGridColor >:
setGridColor <cellldentifier > [color <color >]
[textColor <color >] [fillColor <color >]
[highlightTextColor <color >] [highlightBackColor <color >]

<setGridFont >:
setGridFont <cellldentifier > [refresh]
[within <nat> [ticks | ms]]

<swapGridValues >:
swapGridValues <cellldentifier > and
<cellldentifier > [refresh] <timing>

<highlightGridComponent >:
highlightGridCell <cellldentifier > <timing>
| highlightGridElem <cellldentifier > <timing>
| unhighlightGridCell <cellldentifier > <timing>
| unhighlightGridElem <cellldentifier > <timing>

<alignGridValue >:
alignGridValue <cellldentifier > <gridAlign> [refresh] <timing>

<graph>:

graph ”ID” size <nat+> [color <color >] [bgColor <color >]
[outlineColor <color >] [highlightColor <color >]
[elemHighlightColor <color >] [nodeFontColor <color >]
[edgeFontColor <color >] [directed] [weighted]
nodes ”{” [] { ”value” [at] <nodeDefinition> [”,”] } ”}”

edges 7{” [{ (" <nat+> 7,” <nat+> [”,” <intText>] 7)” [7,”]"}”
[origin <nodeDefinition >] [showIndices] [depth <nat>] <timeOffset>

<graphOperations >:
<edgeTransformation> | <changeWeight> | <nodeTransformation>

<edgeTransformation >:
highlightEdge on ”ID” [<methodSpec>] { ”(” <int> ”,” <int> ”)” }
| unhighlightEdge on ”ID” [<methodSpec>] { (" <int> ”.,” <int> 7)” }

<changeWeight >:
setEdgeWeight [of] 7"ID” edge ”(” <int> ”,” <int> ”)” to <int>

<nodeTransformation >:
highlightNode on ”ID” [<methodSpec>] nodes { <int> } <timing>
| unhighlightNode on ”ID” [<methodSpec>] nodes { <int> } <timing>

B COMPLETE BNF

57

(S

LISTINGS

Listings
1 Example definition
2 Notationexample e e e
3 timeOffset
4 Definition of natural and integer numbers L. oL
5 Coordinate definition
6 Definition of locations L
7 Specifying colors in ANIMALSCRIPT it iiie e e e
8 Definition of display options
9 Definitionof afontentry
10 Availabel font names in ANIMALSCRIPT,
11 Specifying a list of graphical objectIDs
12 ANIMALSCRIPT headerformat
13 Example ANIMALSCRIPT fileheader
14 Definition of commands
15 Definition of operationso e
16 Internationalization SUPPOTt e e
17 Internationalization example
18 Definition of the ANIMALSCRIPT primitives
19 Notation for a point primitive o e
20 Example command for a point primitive
21 Notation for a line or polylineobject
22 Notation for the optional arrows used for several objecttypes
23 Example command for a line primitive oL Lo
24 Example command for a polyline with three relativenodes
25 Notation for fill options e
26 Definition of the polygon family members oL
27 Definition for the square primitive
28 Example command for a square primitive Lo o
29 Definition for the rectangle primitive types L.
30 Equivalent definition of rectangles oo
31 Definition for triangle primitives Lo
32 Example command for a triangle primitive L.
33 Definition for polygon primitives Lo e
34 Example command for a polygon primitiveo 0oL
35 Definition for fext components L.
36 Definition for internationalized text components
37 Example of using internationalized text primitives
38 Definition of the arc farmily or primitives Lo oL
39 Definition of an arc primitive oL
40 Definition of the closed options e
41 Example definition of an arc primitiveo
42 Definition for circle segment primitives oo
43 Example definition of a circle segment primitive
44 Definition of the ellipse primitive Lo
45 Example definition of an ellipse primitive L.
46 Definition of the circle primitive
47 Example definition of a circle primitiveo o
48 Definition of the array primitive e
49 Example commands for animating an array primitive
50 Definition of the arrayMarker primitive 0oL

58

DB W W W

LISTINGS 59

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Definition of the listElement primitive e 24
Example definition of a listElement primitive 25
Declaration of the code types L 25
Definition of a codeGroup primitive 25
Definition for adding code linestoacode group 26
Definition for adding code elementstoacode group 26
Definition of the grid primitive 27
Example of three grid definitions L 28
Definition of the graph primitive L 28
Example code for a graph primitive 29
Definition of the animationeffects o oL, 30
Array Operations OVEIVIEW v v v v v e v e e e e e e e e e e e e 30
Definition of the arrayPut command L 30
Definition of the arraySwap command oL 31
Definition of the commands for moving array markers 31
Definition of the commands for highlighting array cells orelements 32
Definition of the clone operation 32
Definition of the different color change operations 32
Definition of the color change effects for code elements 33
Definition of the operation for showing or hidingacode group 33
Definition of delays between steps usingdelay 33
Definition of the echo command for debug output 34
Definition of the commands for grouping and ungrouping elements 35
Definition of the label operation 35
Definition of the setLink and clearLink commands 35
Overview of the move types 35
Definition of the method subtype and the movecorner 36
Definition of the move viacommand o o oL, 36
Definition of the move along command, 36
Definition of the keywords for the move along move objecttype 37
Definition of the move focommand 37
Definition of the rofate commando oL 37
Definition of the show / hide commands 38
Definition of the swap command 38
Definition of the setText command 38
Operationson variables L L 39
Definition of the cellldentifier for accessing gridelements 39
Example of addressing grid positionso 40
Definition for settinga gridvalue L o 41
Definition of the commands for (un-)highlighting grid elements/cells 41
Definition for setting the color of a grid cell orelement 42
Definition for aligning grid values L 42
Definition for changing the fontof a gridelement 42
Definition of the swapGridValuescommand 42
Operations on graph primitives it e e e 43

elementDefinitions e 47

Index

[1, see optional colorChange
#, see comments with # methods, 46
{}, see Composite step commands, 9
comments with #, 10
absolute placement, see node definition Composite step, 3, 9
Animation header, 9
author, 9 Definition of locations, 6
title, 9 depth, 12
animation step, 10 direction, 4
arc, 19-22 display options, 7

arcAngle, 20
clockwise, 20 .
counterclockwise, 20 ellipseSeg, 19 .
radius, 19 elhpseSggment, see ellipseSeg
startAngle, 20 expression, 4

array, 22
cascaded, 22
cellHighlight, 23

ellipse, 21

fill options, 14
font definition, 7
forward arrow, see arrows

color, 23 Full BNF, 47-57
elementColor, 23
elemHighlight, 23 graph, 28-29, 43
fillColor, 23 definition, 28-29
horizontal, 22 grid, 27-28, 3943
length, 22 address, 3940
operations, see operations - array alignGridValue, 42
vertical, 22 definition of, 27
array marker, 23 example, 27-28
arrows, 13 highlight, 41
refresh, 41
backward arrow, see arrows setGridColor. 41-42
bounding box, 5 setGridFont, 42
. setGridValue, 41
circle, 21

circleSeg, 20 swapGridValues, 4243

circleSegment, see circleSeg integer, 4
closedOptions, 20 Internationalization, see language support, 18
code, 25
addCodeElem, 26 language support, 10
addCodeLine, 26 line, see polyline
code group, 25 list element, 24
color, 26 boxFillColor, 24
contextColor, 26 color, 24
highlightColor, 26 pointer position, 24
indentation, 26 pointerAreaColor, 24
color definition, 6 pointerAreaFillColor, 24
color lookup table, 44 pointers, 24
color names, 6, 44 textColor, 24
color values, 44 location=1ocation, 6

RGB values, 6
move

60

INDEX

methods, 45

natural, 4
node definition, 4

example, 5
nodeDefinition=<nodeDefinition>, 4

object IDs, 7
offset, see node definition
oid, see object IDs
operations, 30-44
array, 30
highlight, 31
move marker, 31
put, 30
swap, 30
clearLink, 35
clone, 32
code, 33
hide, 33
color
code highlight, 33
color change, 32
delay, 33
echo, 34
element grouping, 34
group, 34
hide, 38
label, 35
list operations, 35
merge, 34
move, 35-37
along, 36
to, 37
via, 36
overview, 30
remove, 34
rotate, 37
set, 34
setLink, 35
show, 38
swap, 38
ungroup, 34
optional, 3

point, 13
polygon, 14-17
polyline, 13
primitives, 9, 12-29
arc, see arc
array, see array
array marker, see array marker

circle, see circle

circleSeg, see circleSeg
circleSegment, see circleSeg
code, see code

ellipse, see ellipse
ellipseSeg, see ellipseSeg
ellipseSegment, see ellipseSeg
line, see polyline

list element, see list element
point, see point

polygon, see polygon
polyline, see polyline
rectangle, see rectangle
relrect, see rectangle

square, see square

text, see text

triangle, see triangle

rectangle, 15
relative placement, see node definition
relrectangle, see rectangle

setFont, 38-39
setText, 38—39
square, 15
Symbols used, 3

text, 17
placement, 17

time offset, 7

timing, 7

triangle, 16

variables, 39

61

